
Supplementary Information for Berger et al., The genomic complexity of primary 
human prostate cancer 
 
 
I.  List of Supplementary Figures and Tables 
 
 
Figure S1: Category-specific point mutation rates 
Figure S2: Frameshift insertion in PTEN 
Figure S3: TMPRSS2-ERG fusion, produced by trio of balanced rearrangements 
Figure S4: TMPRSS2-ERG fusion, produced by 3-megabase deletion 
Figure S5: Association between rearrangement breakpoints and chromatin marks for 
prostate cancer, lung cancer, and melanoma 
Figure S6: Association between rearrangements in breast cancer and chromatin marks in 
prostate cancer 
Figure S7: Association of point mutations with chromatin marks and rearrangement 
breakpoints 
Figure S8: FISH validation studies on an independent prostatectomy cohort 
Figure S9: Comparison of CADM2, CSMD3, and MAGI2 to known fragile sites 
Figure S10: FISH confirmation of PTEN rearrangements 
Figure S11: Copy number analysis of intragenic breakpoints in CADM2, PTEN, and 
MAGI2 
Figure S12: Robustness of association between rearrangement breakpoints and 
chromatin marks 
 
 
Table S1: Clinical characteristics of 7 prostate cancer genomes 
Table S2: All somatic base pair mutations in 7 tumors 
Table S3: Somatic base pair mutations in protein coding regions 
Table S4: Small indels in protein coding regions 
Table S5: Somatic structural rearrangements in 7 tumors 
Table S6: Association between rearrangement breakpoints and ChIP-Seq binding peaks 
Table S7: Genes harboring intragenic rearrangements in multiple tumors 
Table S8: Rate of rearrangement for CADM2, CSMD3, and MAGI2 
Table S9: Sequencing metrics for all Illumina flow cell lanes 
 



 II. Supplementary Methods 
 
A. Sample Attributes, DNA Preparation, and Quality Control 
 
Description of the clinical cohort 
 
The prostate cancer samples used for this study came from a cohort of men undergoing 
surgery by one surgeon (A.T.) for clinically localized prostate cancer at the Institute of 
Prostate Cancer and Lefrak Center of Robotic Surgery, Weill Cornell Medical College 
and New York Presbyterian Hospitals (New York, NY). 
 
Prostate cancer selection and DNA extraction 
 
All of the prostate cancer samples were collected under an IRB approved protocol. 
Hematoxylin and eosin (H&E) slides were prepared from frozen tissue blocks and 
evaluated for cancer extent and tumor grade by the study pathologist (M.A.R./R.E.). To 
ensure for high purity of cancer cells and minimize benign tissue, tumor isolation was 
performed by first selecting for high-density cancer foci (<10% stromal or other non-
tumor tissue contamination) and then taking 1.5 mm biopsy cores from the frozen tissue 
block for DNA extraction. DNA was extracted using phenol-chloroform and purified by 
ethanol precipitation method. Frozen tissue cores were homogenized and incubated in 
lysis solution made up of TE, NaCl, SDS, Proteinase K and nuclease-free water for 16 
hours at 55°C. Next, phenol/chloroform/isoamyl alcohol (24:25:1, pH 8) mixture was 
added and DNA isolated from the aqueous phase. Into the removed supernatant, 
chloroform/isoamyl alcohol (49:1) mixture was added, centrifuged, and the aqueous 
phase re-extracted. For purification, DNA was precipitated in isopropanol solution 
containing glycogen and 2M sodium perchlorate, and the pellet washed twice with 70% 
ethanol at 4°C. The purified DNA was suspended in nuclease-free water. DNA from 
whole blood was extracted using Gentra® Puregene® Kit (Qiagen, Valencia, CA). DNA 
from tissue and blood were treated with RNase A (Qiagen) according to the 
manufacturer’s instructions and then run on a 2% agarose gel to assess for structural 
integrity. 
 
Determining ETS rearrangement status by interphase FISH and RT-PCR 
 
The ETS rearrangement status was assessed on tissue slides or RNA taken from the same 
tumor nodule used for DNA sequencing. The methods for fluorescence in situ 
hybridization (FISH) and RT-PCR for TMPRSS2-ETS gene fusion have been previously 
described1. We used an ERG break-apart FISH assay followed by TMPRSS2 break-apart 
assay to confirm the genes’ rearrangement on the DNA level. Confirmation of the 
TMPRSS2-ERG fusion on the transcript level was performed by RT-PCR. In brief, RNA 
was reverse transcribed using the High Capacity cDNA Reverse Transcription Kit 
(Applied Biosystems, Foster City, CA). The TMPRSS2-ERG PCR was performed using 
Platinum Taq DNA Polymerase (Invitrogen, Carlsbad, CA) with 1.5 mM MgCl2, 0.1 µM 
of each primer (forward: TMPRSS2 exon 1 –TAGGCGCGAGCTAAGCAGGAG – and 
reverse: ERG exon 5 – GTAGGCACACTCAAACAACGACTGG (ref 1); and 50 ng 



cDNA at an annealing temperature (Ta) of 63°C for 35 cycles and the PCR products were 
separated on a 2.5% agarose gel. For the detection of TMPRSS2-ERG isoform IV, the 
PCR was performed, using a reverse primer in ERG exon 7 
(CCATATTCTTTCACCGCCCACTCC), under the same conditions but with 1 mM 
MgCl2 and 40 cycles. The obtained products were isolated from the gel using the 
MinElute™ Gel Extraction Kit (Qiagen, Valencia, CA) and subsequently sent for Sanger 
sequencing at the Life Sciences Core Laboratories Center of Cornell University (Ithaca, 
NY). 
 
Quality assessment of DNA and tumor purity 
 
Concentrations of tumor and normal DNA were measured using PicoGreen® dsDNA 
Quantitation Reagent (Invitrogen, Carlsbad, CA). We required a minimum DNA 
concentration of 60 ng/µl for sequencing. In one case (PR-1701), the initial concentration 
was <60 ng/µl and was increased following ethanol precipitation and re-suspension. To 
confirm that the DNA samples were of sufficiently high quality and not degraded, we 
performed gel electrophoresis and observed that in each case the large majority of DNA 
was high molecular weight. We prepared reserve stocks of each sample using whole 
genome amplification (WGA) for use in subsequent validation efforts, though the 
Illumina sequencing libraries were created with the native DNA. The identities of all 
tumor and normal DNA samples (native and WGA product) were confirmed by mass 
spectrometric fingerprint genotyping of 24 common SNPs (Sequenom, San Diego, CA). 
Finally, tumor DNA was hybridized to genome-wide human SNP microarrays 
(Affymetrix SNP Array 6.0) and analyzed as described previously2. We used a novel 
algorithm, termed ABSOLUTE, to infer the tumor purity and average ploidy from the 
allele-specific copy number levels (Carter S.L. et al., manuscript in preparation). We then 
calculated the “allelic fraction” for each tumor, indicative of the fraction of sequence 
reads expected to harbor the non-reference allele at a locus with a somatic mutation 
existing at a single copy per nucleus. We selected samples for sequencing with an allelic 
fraction > 0.25.  
 
 
B. Sequence Data Generation and Processing 
 
We sequenced the complete genomes of tumor and normal samples according to the 
manufacturer’s protocols (Illumina, San Diego, CA) and as described elsewhere 
(Chapman et al., in press). A brief summary is provided below. 
 
Whole genome shotgun (WGS) library construction 
 
3 µg of native DNA from each tumor and normal sample was sheared to a range of 100-
700 basepairs using the Covaris E210 instrument (Covaris, Woburn, MA). DNA 
fragments were end-repaired, phosphorylated, and modified by adenylation of 3’ ends. 
Following the ligation of standard paired end adaptors, fragments were purified by gel 
electrophoresis (4% agarose, 85 volts, 3 hours) and gel excision of two bands (500–
520bp and 520–540bp). This resulted in two libraries for each sample, with inserts 



averaging 380bp and 400bp, respectively. Qiagen min-elute columns were used for DNA 
purification after each step. Final purified fragments were enriched by PCR amplification 
(10 cycles). 
 
Illumina sequencing 
 
The quantity of fragments with properly ligated adapter was measured for each library by 
qPCR. Each library was then normalized to 2 nM and denatured using 0.1 N NaOH. 
Cluster amplification was performed according to the manufacturer’s protocols using v2 
Chemistry and v2 Flowcells. Cluster densities were measured using SYBR Green dye. 
We performed paired-end sequencing (2 × 101bp) on the Illumina Genome Analyzer II 
platform, using v3 Sequencing-by-Synthesis kits and the Illumina v1.3.4 analysis 
pipeline. Both libraries from each individual sample were sequenced to approximately 
equal depth. Each library was sequenced on an average of 15 flow cell lanes, resulting in 
a haploid genomic coverage of approximately 30x for each tumor and normal. Standard 
quality control metrics for each lane are listed in Supplementary Table S9. 
 
Data processing pipeline (Picard) 
 
The data-processing pipeline “Picard” was developed by the Sequencing Platform at the 
Broad Institute for the pre-processing, alignment, and post-filtering of massively parallel 
sequencing data (Fennell T. et al., unpublished). The output of Picard is a single BAM 
file3 (http://samtools.sourceforge.net/SAM1.pdf) storing all reads with well-calibrated 
quality scores together with their alignments to the reference genome. The Picard 
pipeline consists of four steps (outlined below): (1) alignment to the genome; (2) 
recalibration of base qualities; (3) aggregation of lane-level data; and (4) flagging 
artifactual duplicate read pairs. Many individual tools in the Picard pipeline are available 
for download at http://picard.sourceforge.net/. 
 
Each base is initially assigned a Phred-like quality Q score4 by the Illumina pipeline, 
representing the probability that the base call is erroneous. In the first step of Picard, read 
pairs are aligned to human genome (NCBI build 36.3) using MAQ and sorted according 
to their chromosomal position5. (The fractions of mapping reads in each lane are listed in 
Supplementary Table S9.) In the second step, these original Q scores are empirically 
recalibrated based on the read-cycle, the lane, the flow cell tile, the base in question, and 
the preceding base. (The original quality scores are kept in the BAM file in the OQ tag 
for each read.) In the third step, lane-level BAM files are aggregated to library-level 
BAM files, which are then combined to sample-level BAM files. This information is 
captured in the read group tag and the BAM header. In the final step, molecular duplicate 
reads are flagged to indicate artifacts from PCR amplification of library fragments. 
 
Several of the tools in the Picard pipeline, as well as in the Firehose pipeline (discussed 
below), were developed in collaboration with the Broad Institute’s Medical and 
Population Genetics Program as part of the Genome Analysis Toolkit (GATK). An 
introduction to the GATK may be found at http://www.broadinstitute.org/gatk. 
 



 
C. Identification of Somatic Mutations 
 
In order to characterize the full spectrum of somatic mutations from the BAM files 
produced for each Tumor/Normal sample pair, the Cancer Genome Analysis group at the 
Broad Institute developed a suite of tools that together comprise the “Firehose” pipeline. 
Firehose manages the input files, analysis tools, and output files as well as the analysis 
workflow: i.e., where the data reside, what needs to be executed on each file and in what 
order, and what is currently running (Voet D. et al., unpublished). Firehose uses 
GenePattern6 as its execution engine, which runs the pipelines and modules based on 
specified parameters and ensures that the analysis results are reproducible. 
 
The tools contained within Firehose execute the following analyses, as also described 
elsewhere (Chapman M. et al., in press; Berger M.F. et al., submitted, Bass A. et al., 
submitted): 
 
Quality control 
 
The first step in Firehose is to ensure that all sequence data match their corresponding 
patient and that there are no swaps between the tumor and normal samples for the same 
individual. To test whether sequence data match their corresponding patient, base calls 
are compared to genotypes determined from Affymetrix SNP 6.0 microarrays7. 
Homozygous non-reference genotypes are compared to the observed bases at the 
corresponding genomic positions for each separate Illumina lane. Lanes with <95% 
concordance are excluded from the analysis. 
 
To test whether there are swaps between tumor and normal samples, we use two pieces of 
information: (1) insert size distribution and (2) copy number profile. Each sequencing 
library has a characteristic insert size distribution whose mean and standard deviation can 
be precisely defined from the tens of millions of read pairs in a given Illumina lane. 
Lanes with an insert size distribution that do not match the distribution of the other lanes 
for the same library are excluded. We also determine the copy number profile of each 
lane (using the depth of coverage in windows of 100kb along the genome) and compare 
to the profile determined by SNP microarrays. Tumor lanes that do not match the 
expected profile, or normal lanes that deviate from the expected flat profile, are excluded. 
 
Local Realignment 
 
The presence of insertions or deletions (indels) with respect to the reference genome can 
lead to multiple unwanted scenarios. The indel may not be properly recognized by the 
sequence aligner, leading to the accumulation of erroneous mutations in the flanking 
sequence. Alternatively, the indel may be placed in the wrong position within the read 
and/or in inconsistent positions within the collection of reads that map to the locus. In 
order to take into account all the evidence for an indel available from multiple reads 
mapping to the locus, we perform a multiple sequence alignment of reads in the vicinity 
of all putative indel sites. (Putative indel sites are denoted based on the presence of indels 



and/or consecutive mismatches within individual reads.) This is accomplished using the 
IndelRealigner module of the Genome Analysis Toolkit 
(http://www.broadinstitute.org/gatk). 
 
Identification of base pair substitutions 
 
Somatic base pair substitutions are identified using a highly sensitive and specific method 
developed by the Broad’s Cancer Genome Analysis group, called muTector. The basic 
steps are outlined below, though more details will be presented elsewhere (Cibulskis K. 
et al., manuscript in preparation). 
 
First, aligned reads in the tumor and normal BAM files are filtered out if they harbor too 
many mismatches or very low quality scores, as these introduce unnecessary noise. 
Second, candidate somatic mutations are identified according to the observed allele 
counts, base quality scores, and sequence coverage at a given genomic position in the 
tumor and normal BAM files. Third, candidate mutations are subject to a series of 
empirical filters designed to eliminate false positives calls. Finally, mutations are 
annotated according to their genomic region (e.g., exon, intron, promoter, intergenic 
region), amino acid change, protein domain, etc. 
 
The calling algorithm utilizes a Bayesian statistical framework to compare the 
probabilities of generating the observed sequence data given underlying reference or non-
reference genotypes. For each sample pair, we calculate two LOD scores (log odds) to 
express our confidence that the tumor is non-reference and that the normal is reference at 
a given position. The tumor LOD score and normal LOD score are compared to separate 
cutoffs reflecting the prior probabilities of mistakenly calling a non-reference base in the 
tumor that is really reference and of mistakenly calling a reference base in the normal that 
is really a germline single nucleotide variant (SNV). 
 
Once the candidate mutation calls are made, filters are applied to account for commonly 
observed error modes. For instance, local sequence context can occasionally lead to 
incorrect Illumina base calls, but often only in reads sequenced in a single direction. 
Therefore, we require that the observed orientations of reads carrying the variant allele 
not significantly differ from the observed orientations of all reads mapping to the locus. 
Occasionally there is not enough evidence to apply this strand filter, either because there 
are not enough total reads mapping to the locus or because there are not enough variant 
alleles to achieve a statistically significant result. We categorize each mutation according 
to the power of the filters given the observed data (i.e., could the filters achieve a 
statistically significant result given the observed sequence coverage and variant allele 
count?). Based on independent validation of 562 predicted mutations (discussed below), 
we consider those calls where the filters are sufficiently powered as “high confidence” 
and those calls where the filters are underpowered as “moderate confidence”. 
 
Of all candidate somatic mutations identified, 46% were categorized as “high 
confidence” and 54% as “moderate confidence” mutations (Supplementary Table 2). The 
validation rates of high confidence and moderate confidence mutations in coding regions 



were 96% and 47%, respectively, (88% and 37% in non-coding regions) based on 
validation of 562 mutations by mass spectrometric genotyping. All predicted somatic 
base pair mutations (and accompanying validation data) are listed in Supplementary 
Tables S2 and S3. 
 
Identification of short insertions and deletions 
 
Putative indel events are called from locally realigned data (see above) based on the 
fraction of supporting reads at a given locus in the tumor BAM file. These high 
sensitivity calls are then subject to a series of filters including the average number of 
mismatches and the distribution of base qualities in the reads containing indels. Events 
are categorized as germline or somatic according to whether there is evidence for the 
same event at the same locus in the normal BAM file. Independent validation 
experiments (Sequenom) have shown a high false positive rate (~60%), consistent with 
other groups, but that manual inspection of putative indels using the Integrative 
Genomics Viewer (Robinson J.T. et al., submitted; http://www.broadinstitute.org/igv) 
enables the identification of the vast majority of false positive calls. Therefore, all indels 
predicted within protein coding exons are subject to manual review. Further details will 
be presented elsewhere (Sivachenko A. et al., manuscript in preparation). 
 
All predicted indels in coding regions are listed in Supplementary Table S4. 
 
Identification of chromosomal rearrangements 
 
Rearrangements were identified from discordant paired sequence reads mapping to 
different chromosomes (translocations), different positions on the same chromosome 
(large deletions, inversions, and duplications), or in unexpected orientations (small 
inversions and tandem duplications).  
 
Chromosomal rearrangements are identified by a novel method developed by the Broad’s 
Cancer Genome Analysis group, called dRanger (Lawrence M.S. et al., manuscript in 
preparation). First, discordant read pairs are identified in the tumor. These are read pairs 
that map to different chromosomes or in unexpected positions (>600bp apart) or 
unexpected orientations (incorrect order on opposite strands or any order on the same 
strand) on the same chromosome. Second, clusters of discordant pairs are used to 
nominate potential rearrangement events. Candidate rearrangements are removed if there 
are any supporting discordant pairs for the same event in its corresponding matched 
normal or in a panel of additional normal genomes sequenced at the Broad Institute. 
Third, a series of additional filtering metrics is computed for each candidate 
rearrangement: (1) the fraction of nearby reads with a mapping quality of zero; (2) the 
number and diversity of other discordant pairs in the vicinity of the breakpoints; and (3) 
the standard deviation of the starting positions of the supporting read pairs. These 
filtering metrics are combined into an overall quality measure (0 to 1), which serves as a 
multiplicative scaling factor to convert the number of supporting read pairs to a score for 
the rearrangement. Based on independent validation experiments (discussed below), we 
consider rearrangements with a score of 3.0 or higher. 



 
Approximate locations of rearrangement breakpoints are assigned based on the boundary 
of all reads in supporting read pairs. Breakpoints are then annotated as intronic, exonic, 
or intergenic according to the RefSeq database. Rearrangements with both breakpoints 
located in genes are further annotated as to whether they are consistent with a gene 
fusion, and whether it would be in-frame or out-of-frame. 
 
When possible, breakpoints are mapped to basepair resolution using BreakPointer (Drier 
Y. et al., manuscript in preparation). BreakPointer searches for read pairs where one read 
mapped on either side of the breakpoint and the pair mate is partly mapped on the 
breakpoint, or failed to align anywhere. It is expected that many of these reads span the 
actual fusion point. These unmapped reads are subjected to a modified Smith-Waterman 
alignment procedure with the ability to jump between the two reference sequences at the 
most fitting point. Further details will be presented elsewhere (Drier Y. et al., manuscript 
in preparation). Using BreakPointer, we were able to map the breakpoints to base pair 
resolution in 88% of cases (663/755). 
 
Rearrangements are illustrated using the “CIRCOS” program 
(http://mkweb.bcgsc.ca/circos) and are shown in Figure 1. All predicted rearrangements 
and breakpionts (and accompanying validation results) are listed in Supplementary 
Table S5. Across the seven prostate tumors, 56% of rearrangements involved at least one 
intragenic breakpoint. 
 
 
D. Experimental Validation of Somatic Mutations 
 
Mass spectrometric genotyping of point mutations 
 
In order to estimate the specificity of our method for calling somatic mutations, we 
obtained independent validation data for 562 candidate mutations using mass 
spectrometric genotyping (Sequenom) of the whole genome amplified tumor and normal 
DNA. This collection included 283 “high confidence” and 279 “moderate confidence” 
predictions. We tested 157 candidate protein-coding mutations, including the vast 
majority of all non-silent mutations in all 7 samples, and 405 non-coding mutations (202 
intronic and 203 intergenic). The genotyping data confirmed that 96% and 88% of high 
confidence calls, and 47% and 37% of moderate confidence calls, were bona fide somatic 
mutations in coding and non-coding regions, respectively. Sequenom failures may 
account for some of the false positive calls. One mechanism by which this may arise is 
through loss of mutant alleles during whole genome amplification. Additionally, we have 
observed that Sequenom exhibits a high failure rate for mutations with an allelic fraction 
<20% (data not shown). 
 
Using the Clopper-Pearson method to calculate 95% confidence intervals, we infer that 
our accuracy rates for high confidence mutations are 96% (CI: 89–99%) in protein coding 
regions and 88% (CI: 83–92%) in non-coding regions, and our accuracy rates for 
moderate confidence mutations are 47% (CI: 36–58%) in protein coding regions and 37% 



(CI: 31–45%) in non-coding regions. However, as suggested above, the true accuracy of 
our method may be greater, on account of false negative calls arising from mass 
spectrometric genotyping. Further, this value is, in theory, dependent upon the overall 
mutation burden per patient, as a tumor harboring more true somatic mutations would be 
expected to exhibit a higher validation rate. As a mitigating factor, we note that the 
estimated mutation rate per patient varies by only two-fold. We confirmed that our 
validation rate in the 3 samples with the highest mutation rates was indistinguishable 
from our validation rate in the 4 samples with the lowest mutation rates: 
 
High confidence mutations (coding and non-coding) 
All samples (283 mutations)   90% (CI: 86–93%) 
Highest 3 mutation rates (144 mutations) 91% (CI: 84–95%) 
Lowest 4 mutation rates (139 mutations) 90% (CI: 83–94%) 
 
Moderate confidence mutations (coding and non-coding) 
All samples (279 mutations)   40% (CI: 34–46%) 
Highest 3 mutation rates (116 mutations) 42% (CI: 35–50%) 
Lowest 4 mutation rates (163 mutations) 37% (CI: 28–48%) 
 
Each fusion-positive sample harbored an overall excess of mutations at CpG 
dinucleotides that was out of proportion with the pattern observed in the four ETS-
negative prostate tumors (p=0.0031; Supplementary Fig. S1). 
 
PCR and massively parallel sequencing of structural rearrangements 
 
Rearrangements predicted by dRanger were validated by PCR followed by pooled 454 
sequencing. PCR primers were designed using Primer3 (http://frodo.wi.mit.edu/primer3) 
such that they spanned the predicted chimeric junction and would produce an amplicon 
approximately 300–350bp long. PCRs were performed on whole genome amplified 
product for both tumor and normal DNA. (For somatic breakpoints, only the tumor DNA 
would be expected to yield a product.) Each PCR product was quantified using a 
NanoDrop Spectrophotometer (Thermo Scientific, Wilmington, DE). PCR products were 
pooled such that: (1) equal amounts of tumor products were combined, (2) the same 
volumes were taken from the corresponding normal products, and (3) matching tumor 
and normal products were placed in separate pools. Libraries for 454 sequencing were 
prepared from each pool and sequenced separate regions of a 454 Genome Sequencer 
FLX System (454 Life Sciences, Branford, CT). Primer sequences served as unique 
barcodes for identifying the source PCR product for each 454 read. A rearrangement was 
judged to be somatic if the predicted chimeric product was detectable in tumor DNA and 
not normal DNA. Out of 594 predicted rearrangements tested, 464 were confirmed as 
somatic, yielding a validation rate of 78%. However, based on discordant results for 
independent primer pairs designed to target the same loci, we estimate the overall 
sensitivity of the PCR validation assay to be 80–90%. (In 24/209 cases where we 
designed two different primer pairs, only one successfully amplified the chimeric 
product.) This suggests that the true specificity of dRanger is likely >90%. 
 



Fluorescence in situ hybridization (FISH) for MAGI2, PTEN, CADM2, and CSMD3 
rearrangements 
 
To assess the status of PTEN, we used a locus specific probe and a reference probe (see 
details below). To assess for inversion of the MAGI2 gene, a unique FISH assay was 
designed. Probes spanning the ends of the gene were labeled red (3’ end) or green (5’ 
end). A third probe, also labeled green, acted as a reference for the arrangement of the 
gene. A chromosome with no gene inversion showed a red signal (3’ end of MAGI2) 
followed by two green signals (5’ end of MAGI2 then the reference probe at 7q36). A 
chromosome with the gene inversion showed the red signal between the two green ones, 
indicating that the 3’ end and the 5’ end have been inverted. To identify rearrangements 
disrupting CADM2 and CSMD3, we utilized break apart FISH assays with probes 
positioned on both sides of the gene. 
 
PTEN (10q23)  BAC# 
PTEN gene (red) CTD-2047N14 
reference (green) RP11-431P18 
 
MAGI2 (7q11)  BAC# 
5’ end (green)  CTD-2014F20 
3’ end (red)  CTD-2517A17 
reference (green) RP11-28C14 (7q36.1) 
 
CADM2 (3p12) BAC# 
5’ end   RP11-164K14 
3’ end   RP11-781J22 
 
CSMD3 (8q23) BAC# 
5’ end   RP11-644M14 
3’ end   RP11-88L22 
 
To determine the prevalence of each class of rearrangement, we surveyed an independent 
cohort of 90 patients (mean age 63.2 years) who underwent radical prostatectomy at 
Weill Cornell Medical College (New York, NY) as a monotherapy. The pathological 
stages ranged from organ confined to cases with extra-prostatic tumor extension. 
 
 
E. Calculation of Somatic Mutation Rates 
 
For the purposes of calculating the genome-wide mutation rate, we defined a base as 
“covered” if there were at least 14 and 8 reads that overlapped the position in the tumor 
and normal, respectively. We considered only mutations called at covered positions; the 
total number of covered positions ranged from 2.51–2.67 Gigabases per sample. To 
account for the variable specificity of high confidence and moderate confidence calls, we 
prorated each class according to their empirical validation rates in non-coding regions 



(88% for high confidence, 37% for moderate confidence). As a result, we estimated the 
average genome-wide mutation rate to be 0.9 per megabase. 
 
There are at least two reasons why this might be an underestimate of the true mutation 
rate. First, the empirical validation rates, which we used as scaling factors, may 
themselves be underestimates due to the imperfect sensitivity of our mass spectrometric 
(Sequenom) validation assay. Second, this calculation does not take into account the 
sensitivity of muTector. Modeling suggests that the sensitivity of muTector is 
approximately 90% (not shown), though it may be somewhat lower for samples with low 
purity and allelic fraction, discussed above. 
 
 
F. Determination of Significantly Mutated Genes and Pathways 
 
We identified significantly mutated genes based on the observed number of mutations for 
each gene in each mutation class (defined below), the sample-specific and class-specific 
background mutation rates, and the number of covered bases per gene. This analysis was 
performed using a novel algorithm, MutSig (Lawrence M.S. et al., manuscript in 
preparation), based partly on methods published elsewhere8,9. Mutations were divided 
into classes according to sequence context: CpG, other C:G, and A:T. For each gene, we 
calculated the probability of obtaining the observed set of mutations (or a more extreme 
one) given the observed background mutation rates. P-values are converted to Q-values 
using the Benjamini-Hochberg procedure for controlling False Discovery Rate (FDR). 
We repeated this analysis at the pathway-level, considering a list of 616 gene sets 
corresponding to known pathways or gene families. For this analysis, we tabulated the 
number of mutations and the number of covered bases in all component genes of each 
gene set. 
 
 
G. High-Density SNP Array Analysis of 66 Prostate Tumors 
 
Genomic DNA from tumor and paired blood samples was processed using Affymetrix 
Genome-Wide Human SNP Array 6.0 (Affymetrix, Inc.) according to manufacturer’s 
protocols. The DNA was digested with NspI and StyI enzymes (New England Biolabs), 
ligated to the respective Affymetrix adapters using T4 DNA ligase (New England 
Biolabs), amplified (Clontech), purified using magnetic beads (Agencourt), labeled, 
fragmented, and hybridized to the arrays. Following hybridization, the arrays were 
washed and stained with streptavidin-phycoerythrin (Invitrogen Corporation). Following 
array scanning, data preprocessing was performed using Affymetrix Power Tools. Copy 
number data was evaluated after segmenting the log 2 ratios between tumor and paired 
normal levels on a sample basis. Quality control, data integrity, segmentation and copy 
number analysis were performed as previously described by Demichelis et al.10  
 
 
H. Co-Occurrence of Breakpoint Locations, Mutations, and Published ChIP-Seq 
Binding Data 



 
For each prostate cancer genome (as well as published melanoma, lung, and breast cancer 
genomes), we tested whether the associated rearrangement breakpoints occurred closer to 
or farther from a given set of ChIP binding sites than expected by chance. We 
downloaded pre-computed ChIP-Seq binding peaks for the following transcription factors 
and chromatin marks in the androgen-sensitive, TMPRSS2-ERG fusion positive prostate 
cancer cell line VCaP: AR (followed by treatment of R1881, a synthetic agonist of the 
androgen receptor), ERG, RNA polymerase II, acetylated histone H3, trimethylated 
histone H3K4, trimethylated histone H3K36, trimethylated histone H3K9, and 
trimethylated histone H3K27 (ref 11). The number of peaks in each experiment ranged 
from 1,725 to 42,568. We also downloaded pre-computed genome-wide ChIP-Seq 
binding peaks for AR, H3K4me3, H3K36me3, H3K9me3, and acetylated histone H3 in 
the ETV1+ prostate cancer cell line LNCaP (ref 11); for AR in the ETS- prostate cancer 
cell line PC3 (ref 12); for H3K4me3, H3K36me3, and H3K27me3 in 3 cell lines from the 
ENCODE project13 (GM12878, K-562, and H1ES); and ChIP-chip binding peaks for 
estrogen receptor (ER) in the breast cancer cell line MCF7 (ref 14). In addition to the 
prostate cancer rearrangements presented here, we considered pre-computed 
rearrangements for published genomes in a melanoma cell line15, a small cell lung cancer 
cell line16, a primary lung cancer17, and 24 breast cancer cell lines and primary tumors18. 
(We later discarded 6/24 breast cancers with fewer than 20 rearrangements.) 
 
To test for enrichment or depletion of a prostate tumor’s rearrangements near a given set 
of ChIP-Seq peaks, we calculated the rate of breakpoints within the aggregate of all 
sequence intervals +/- 50 kb surrounding each peak. This was compared to the 
background rate of breakpoints, which we estimated by taking the average of 1,000 
simulations in which we controlled for coverage and structure. Simulated breakpoints 
were randomly generated at positions matched in sequence coverage to the observed 
breakpoints, to control for hidden correlations between breakpoints and ChIP-Seq peaks 
due to sequencing bias. (Background sampling considered the mean sequence coverage 
across all 7 prostate genomes in bins of size 5 (top bin ≥ 50-fold depth).) To control for 
structure, simulated breakpoint pairs corresponding to intrachromosomal rearrangements 
were preserved at fixed distances such that one end was perfectly matched in sequence 
coverage and the other end occurred at a site with no less than (but possibly greater than) 
the observed sequence coverage. (Controlling for structure was necessary to account for 
non-independent events from small intrachromosomal inversions and deletions.) 
Significance of enrichment or depletion of observed breakpoints compared to background 
was calculated according to the binomial distribution (Supplementary Table 6). In 
addition to a binomial p-value, we also computed the ratio of the observed rate to the 
background rate to determine the effect size independent of the total number of 
rearrangements detected in a given sample. 
 
We repeated this calculation using different window sizes and found that the effects were 
consistent for intervals ranging from +/- 1 kb to +/- 1 Mb surrounding each ChIP-Seq 
peak (Supplementary Fig S12a). To be sure that significant associations were not the 
result of a small number of driver genes, we repeated calculations upon removing all 



rearrangements involving any of 16 genes we found to be recurrently disrupted in the 7 
prostate tumors presented here (57 rearrangements total; Supplementary Fig. S12b). 
 
To test for enrichment or depletion of point mutations near a given set of ChIP-Seq 
peaks, we repeated the calculations exactly as described above using a coverage-matched 
simulated background (Supplementary Fig. S7a). (We did not attempt to preserve the 
distance between mutations on the same chromosome.) To test for enrichment or 
depletion of point mutations near rearrangements in the corresponding prostate genome, 
we repeated the calculations using a coverage-matched simulated background in different 
window sizes surrounding each breakpoint (Supplementary Fig. S7b). 
 



III.  Supplementary Figures 
 

 
 
 
Supplementary Figure S1: Category-specific point mutation rates. Rates represent high 
confidence mutations at all “covered” positions (as defined in Methods); error bars 
represent 95% confidence intervals. (a) Average mutation rate for all 7 prostate tumors, 
broken down by category: CpG transition, CpG transversion, other C transition, other C 
transversion, A transition, A transversion. (b) Category-specific mutation rates, broken 
down by individual. The three TMRPSS2-ERG fusion-positive samples exhibit an excess 
of CpG transitions that is out of proportion with the other samples (p=0.0031; two-sided 
t-test). 



 
Supplementary Figure S2: Frameshift insertion in PTEN. Prostate PR-0581 harbors a 
2bp frameshift insertion, which is evident in the sequence reads from the tumor genome 
but not the matched normal genome. Sequence data are visualized using the Integrative 
Genomics Viewer (IGV; Robinson J.T. et al., submitted): 
http://www.broadinstitute.org/igv. 
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Supplementary Figure S3: Complex rearrangement producing TMPRSS2-ERG in 
prostate PR-0581. A trio of balanced (copy neutral) intrachromosomal rearrangements on 
chromosome 21 involving ERG, C21orf45, and two separate introns of TMPRSS2 leads 
to the creation of TMPRSS2-ERG. Exon 1 of TMPRSS2 is joined to the 3' end of ERG; 
the 5' end of ERG is joined to the 5' end of C21ORF45; and the 3' end of C21ORF45 is 
joined to exon 6 of TMPRSS2. Discordant read pairs in the tumor genome but not the 
normal genome (yellow bars connected by blue lines) indicate somatic breakpoints. 
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Supplementary Figure S4: Hemizygous deletion producing TMPRSS2-ERG in prostate 
PR-2832. A somatic 3-megabase deletion on chromosome 21 is implicated by the 
presence of discordant read pairs in the tumor genome but not the normal genome 
(yellow bars connected by blue lines), indicative of intragenic breakpoints joining the 5’ 
end of TMPRSS2 and the 3’ end of ERG. 
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Supplementary Figure S5: Association between rearrangement breakpoints and 
chromatin marks for prostate cancer, lung cancer, and melanoma. (a) For each genome, 
enrichment of breakpoints within 50 kb of each set of ChIP-Seq binding peaks was 
determined relative to a distance-matched and coverage-matched simulated background, 
as described in Supplementary Methods. P-values were calculated according to the 
binomial distribution. (For display purposes, -log p-values were multiplied by -1 in cases 
where breakpoints were depleted rather than enriched.) Marks of active transcription 
include AR, ERG, H3K4me3, H3K36me3, H3ace, and Pol II; marks of closed chromatin 
include H3K27me3 and H3K9me3. Breakpoints in TMPRSS2-ERG fusion-positive 
prostate PR-2832 are enriched near marks of active transcription in VCaP (left) and other 
cell lines (right), while breakpoints in ETS-negative prostates (green labels) are depleted. 
Breakpoints in 2 lung cancer genomes16,17 and 1 melanoma genome15 do not exhibit 
significant associations with VCaP chromatin marks. (b) Enrichment is displayed as the 
ratio of the observed breakpoint rate to the background rate near each indicated set of 
ChIP-Seq peaks. Unlike p-values (above), the effect size is independent of the total 
number of rearrangements per sample. 



 
Supplementary Figure S6: Association between rearrangements in breast cancer and 
chromatin marks in prostate cancer. Breast cancer rearrangement breakpoints were 
identified previously from low coverage paired-end genome sequencing18. ChIP-Seq 
binding peaks were defined previously for the ERG+ prostate cancer cell line VCaP11, 
and ChIP-chip binding peaks were defined previously for the breast cancer cell line 
MCF7 (ref 14). (a) Enrichment of breakpoints near ChIP-Seq peaks, as shown in 
Supplementary Figure S5. Breast cancers show a positive association between 
rearrangement breakpoints and marks of active chromatin in prostate cancer, and also 
with estrogen receptor (ER) binding sites in breast cancer. For each chromatin mark, 
enrichment of breakpoints was determined for 9 cell lines (top) and 9 primary tumors 
(bottom) with at least 20 rearrangements. (b) High correlation between ChIP binding 
peaks in MCF7 for ER and binding peaks in VCaP for markers of open chromatin (AR, 
ERG, H3K4 me3, H3K36 me3, Pol II) but not closed chromatin (H3K9 me3, H3K27 
me3). Enrichment of ER binding peaks is calculated as above and represented as a ratio 
of the observed peak rate to the background rate. 



 
 
 
Supplementary Figure S7: Association of point mutations with chromatin marks and 
rearrangement breakpoints. (a) Point mutations are depleted near VCaP ChIP-Seq 
binding peaks indicative of open chromatin (AR, ERG, H3K4me3, H3K36me3, H3 ace, 
Pol II) and enriched near VCaP ChIP-Seq binding peaks indicative of closed chromatin 
(H3K27me3, H3K9me3) in all 7 prostate tumors. P-values and enrichment ratios are 
calculated using a coverage-matched simulated background as above, for intervals of 50 
kb surrounding each set of ChIP-Seq binding peaks. These results are consistent with 
both negative selection and transcription-coupled DNA repair. (b) Point mutations are 
enriched near rearrangement breakpoints at multiple distances in 5 prostate tumors, 
including 2/3 TMPRSS2-ERG fusion-positive tumors (purple labels) and 3/4 ETS-
negative tumors (green labels). 



 
 
 

 
 
 
 
 
 
Supplementary Figure S8: FISH validation studies on an independent prostatectomy 
cohort. Clinically localized prostate cancer samples from Weill Cornell Medical College 
were screened by FISH to examine the prevalence of particular classes of rearrangements 
involving CADM2, MAGI2, and CSMD3. The genomic positions of FISH probes are 
illustrated at left, and representative FISH images from the independent cohort are shown 
at right. Results are summarized in the table. All samples with detectable MAGI2 
inversions are wild type for PTEN. The rates shown here include only those cases 
detectable by the specific FISH probes used in this experiment and thus represent a lower 
bound for the true prevalence of rearrangements disrupting these genes. 



 
Supplementary Figure S9: Comparison of CADM2, CSMD3, and MAGI2 to known 
fragile sites. Genome-wide copy number profiles from >3,300 human tumors and cell 
lines, as analyzed by Beroukhim et al.19, were visualized using the Integrative Genomics 
Viewer (Robinson J.T. et al., submitted; http://www.broadinstitute.org/igv). For each 
locus, a 1-megabase interval was defined, and all samples were sorted according to the 
sum of the magnitudes of all copy number alterations within the interval. Illustrated in 
each panel are the top ~8% of samples sorted in this fashion. The three genes recurrently 
rearranged in prostate cancer are indistinguishable from the random loci and exhibit far 
fewer copy number breakpoints than the known fragile sites. FRA7K is a novel fragile 
site described by Bignell and colleagues20. 
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Supplementary Figure S10: FISH confirmation of PTEN rearrangements. Intragenic 
breakpoints in PTEN in prostates PR-0581 and PR-1701 generate unbalanced 
heterozygous deletions that were confirmed by FISH analysis. FISH was performed as 
described in Supplementary Methods. 



 
 
 
Supplementary Figure S11: Copy number analysis of intragenic breakpoints in 
CADM2, PTEN, and MAGI2. Genome-wide copy number profiles were determined for 
66 prostate tumors using Affymetrix SNP 6.0 microarrays (red = copy gain; blue = copy 
loss). Samples (rows) with intragenic breakpoints identified from whole genome 
sequencing are labeled. 
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Supplementary Figure S12: Robustness of association between rearrangement 
breakpoints and chromatin marks. (a) Effect of varying window size on enrichment 
calculation. Enrichment/depletion near ChIP-Seq binding peaks is consistent for PR-2832 
(left) and PR-0508 (right) when different sized intervals flanking binding peaks are 
considered. (b) Effect of removing candidate driver genes. We obtained nearly identical 
results after removing 57 rearrangements involving 16 genes recurrently disrupted in the 
7 prostate tumors (see Supplementary Figure S5), suggesting that the observed 
associations are not the result of a small number of driver genes. 



IV.  References 
 
1. Tomlins, S.A., et al. Recurrent fusion of TMPRSS2 and ETS transcription factor 

genes in prostate cancer. Science 310, 644-648 (2005). 
2. Comprehensive genomic characterization defines human glioblastoma genes and 

core pathways. Nature 455, 1061-1068 (2008). 
3. Li, H., et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 

25, 2078-2079 (2009). 
4. Ewing, B., Hillier, L., Wendl, M.C. & Green, P. Base-calling of automated 

sequencer traces using phred. I. Accuracy assessment. Genome Res 8, 175-185 
(1998). 

5. Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling 
variants using mapping quality scores. Genome Res 18, 1851-1858 (2008). 

6. Reich, M., et al. GenePattern 2.0. Nat Genet 38, 500-501 (2006). 
7. Korn, J.M., et al. Integrated genotype calling and association analysis of SNPs, 

common copy number polymorphisms and rare CNVs. Nat Genet 40, 1253-1260 
(2008). 

8. Getz, G., et al. Comment on "The consensus coding sequences of human breast 
and colorectal cancers". Science 317, 1500 (2007). 

9. Ding, L., et al. Somatic mutations affect key pathways in lung adenocarcinoma. 
Nature 455, 1069-1075 (2008). 

10. Demichelis, F., et al. Distinct genomic aberrations associated with ERG 
rearranged prostate cancer. Genes Chromosomes Cancer 48, 366-380 (2009). 

11. Yu, J., et al. An integrated network of androgen receptor, polycomb, and 
TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 
443-454 (2010). 

12. Lin, B., et al. Integrated expression profiling and ChIP-seq analyses of the growth 
inhibition response program of the androgen receptor. PLoS One 4, e6589 (2009). 

13. Birney, E., et al. Identification and analysis of functional elements in 1% of the 
human genome by the ENCODE pilot project. Nature 447, 799-816 (2007). 

14. Carroll, J.S., et al. Genome-wide analysis of estrogen receptor binding sites. Nat 
Genet 38, 1289-1297 (2006). 

15. Pleasance, E.D., et al. A comprehensive catalogue of somatic mutations from a 
human cancer genome. Nature 463, 191-196 (2010). 

16. Pleasance, E.D., et al. A small-cell lung cancer genome with complex signatures 
of tobacco exposure. Nature 463, 184-190 (2010). 

17. Lee, W., et al. The mutation spectrum revealed by paired genome sequences from 
a lung cancer patient. Nature 465, 473-477 (2010). 

18. Stephens, P.J., et al. Complex landscapes of somatic rearrangement in human 
breast cancer genomes. Nature 462, 1005-1010 (2009). 

19. Beroukhim, R., et al. The landscape of somatic copy-number alteration across 
human cancers. Nature 463, 899-905 (2010). 

20. Bignell, G.R., et al. Signatures of mutation and selection in the cancer genome. 
Nature 463, 893-898 (2010). 

 
 


